NVIS Communications

Ken Larson KJ6RZ August 2025 www.skywave-radio.org

NVIS Is Important!

- Near Vertical Incident Skywave (NVIS) is a powerful mode of HF communications
- It is heavily used for local and regional radio communications, including
- In mountainous and jungle regions where other forms of radio communications are impossible
- It is extensively used for emergency operations, and
- For modern day military communications

What Is NVIS?

- NVIS is simply radio communications using HF signals that are transmitted at high elevation angles, i.e. at greater than 60°
- It is the high elevation angles that makes NVIS so important
- NVIS signals are radiated by low horizontal antennas less than 1/4 wavelength above ground

Local HF Communications

- There are 3 modes of local HF propagation
- Line of Sight (LOS), Ground Wave (GW), and Near Vertical Incident Skywave (NVIS)
- These are the only possible modes for local HF communications

Line of Sight Propagation

HTQ Solutions

- HF line of sight propagation is very similar to communicating on 2 meters, 220, and 440 MHz
- The distance covered by LOS depends on the height of the transmitting and receiving antennas
- In the figure above the LOS distance between two people with handheld radios is approximately 6 miles
- The LOS distance between a person with a handheld radio and a repeater on a mountain top is greater as the above equation indicates
- The HF LOS distance from my antenna (height = 30 ft) to a similar receiving antenna is approximately 13.4 miles, presuming the local hills don't get in the way which unfortunately they do

Ground Wave Propagation

Frequency Band	Typical Ground Wave Distance
80 meters	68 miles
40 meters	50 miles
20 meters	30 miles

- Ground wave propagation range depends on Frequency, Terrain, and Soil Conditions
- Ground wave range decreases with increasing frequency as shown in above chart
- Ground wave distances shown above occur over flat terrain and excellent soil
- In Ventura County with many hills, mountains, and rocky soil ground wave propagation range is much less (15 to 20 miles on 40 meters if we are lucky)

NVIS Coverage

- NVIS along with LOS and GW provide local HF communications (green and magenta traces)
- NVIS also provides communications to radio stations up to 300 miles from the transmitting station, i.e. to stations beyond the range of local LOS and GW propagation (the red trace)
- From a communications perspective **regional area** can be defined as the area covered by NVIS propagation
- NVIS provides coverage to all radio stations in the regional area

NVIS Range

- At an elevation angle of 60°, the NVIS propagation range is 200 to 300 miles
- A transition zone of NVIS propagation, with low D Layer absorption, typically extends out 350 to 380 miles
- Beyond 400 miles we encounter oblique propagation conditions including moderate to high levels of D Layer absorption, skip zones, Maximum Usable Frequency, etc.

Local Communication Problems

- There are local communication problems that we need to be aware of
- Line-of-site (LOS) and ground wave (GW) propagation always exist
- Consequently, multi-path interference problems between NVIS, ground wave, and line-of-site signals can sometimes occur
- Multi-path interference occurs when two signals (NVIS and GW for example) traveling via different paths arrive at the receiving site with the same signal strength but out of phase
- The two signals will completely cancel out if they are 180° out of phase, meaning that neither signal is heard by the receiving station
- Multi-path interference results in signal degradation, fading and perhaps complete signal lose

NVIS Communications in Mountainous Terrain

AFCEA International

- NVIS communications work well in mountainous terrain where other forms of radio communications do not
- Radio systems precluded from use in mountainous terrain include: low angle long distance HF, line of sight VHF, UHF, and often satellite communications
- Local HF line of sight and ground wave propagation are also precluded
- Due to its high elevation angle NVIS is often the only means of radio communications into and out of deep mountain valleys and canyons

NVIS Communications In Jungle Regions

- NVIS signals quickly penetrate the jungle canopy avoiding severe signal attenuation caused by lush often wet jungle vegetation
- In contrast Line Of Sight (LOS) and Ground Wave (GW) signals typically propagate only a mile or two before being completely absorbed by the dense jungle vegetation
- Example, HF emergency communications in Puerto Rico following Hurricane Maria in 2017

Author / World Walks

NVIS Depends On The Ionosphere's Critical Frequency

- The ionosphere's Critical Frequency f_c is the **highest** frequency signal that can be transmitted straight up and reflected back down to Earth
- Signals higher in frequency transmitted straight up will penetrate the ionosphere and be lost to outer space
- All signals lower in frequency than **f**_c will be reflected back to Earth, these are the NVIS frequencies

Determining the Current Critical Frequency

- Ground based sounders, known as ionosondes, are used around the world to determine local critical frequencies
- Our closest ionosonde in California is located just south of Vandenburg AFB

Ionosonde controller & data processor

Global Critical Frequency Map

This chart shows the Critical Frequency for January 31, 2024 at 03:00 UT

Over California the Critical Frequency was between 4 to 5 MHz

Critical frequency in Northern Europe was 2 MHz

- Critical frequency is very important in NVIS communications
- So where do you find the ionosphere's current critical frequency?
- The Australian Government produces a global F2 critical frequency map that is available under the Current Conditions tab on the www.skywave-radio.org website
- The critical frequency map is updated every 15 minutes
- The map is created automatically from reports received from ionosonde monitoring stations around the world

NVIS Propagation vs Critical Frequency

- NVIS propagation is only possible if the NVIS transmitting frequency f is below the ionosphere's critical frequency $f_c \rightarrow$ this makes sense
- Critical frequency is the highest frequency that can be transmitted straight up and reflected back to Earth
- A higher frequency signal transmitted nearly straight up (an NVIS signal) will penetrate the ionosphere and be lost to outer space
- Thus NVIS communications is only possible for frequencies below the critical frequency

NVIS Propagation vs Critical Frequency Example

- For example, if the current critical frequency is 8 MHz, then NVIS propagation will be excellent on 40 and 80 meters since both frequency bands (7.0 MHz and 3.5 MHz respectively) are below the 8 MHz critical frequency.
- However, if the critical frequency drops to 6 MHz, then NVIS propagation will no longer be possible on 40 meters, but it will still be good on 80 meters
- If the critical frequency drops to 6 MHz or lower we must change our operating frequency from 40 to 80 meters
- Frequency agility is an important aspect of NVIS communications

NVIS Fading

- Critical frequency continuously drifts up and down in frequency
- A critical frequency of 7 MHz may drift to 7.6 MHz and then down to 6.5 MHz
- Consequently, a 40 meter (7.2 MHz) signal fades in and out as the critical frequency drifts above and below the transmitting frequency
- To avoid fading operating at a frequency at least 10% below the critical frequency is recommended

D – Layer Absorption

Absorption $\propto \frac{1}{f^2}$

Author

- D Layer absorption is inversely proportional to frequency squared
- For example: absorption is 4 times greater on 80 meters than on 40 meters
- To minimize D-Layer absorption, operate on the highest available frequency band that is at least 10% below the critical frequency
- If both 40 and 80 meters are below the critical frequency, operate on 40 meters to minimize D-Layer absorption

40 Meter Mid Day NVIS is Excellent

- Excellent 40 meter NVIS occurs throughout the day, in particular during mid day when D-Layer absorption is greatest
- The reason for this is that the high elevation angle NVIS signals (blue trace) pass through the D-Layer quickly incurring little absorption
- However, long distance low angle 40 meter signals spend more time passing through the D-Layer often resulting in complete D-Layer absorption
- This is very important: Using **NVIS propagation** (40 meters during the day and 80 meters at night) we can reliably communicate nearly 24 hours per day 7 days per week
- NVIS is a powerful mode!

Low Power NVIS Communications

- NVIS Operation at higher power levels is necessary under adverse conditions and when fighting multipath interference problems
- Typically, however, excellent NVIS communications is achieved using 10 to 15 Watts
- The reason is that NVIS path lengths are very short (a single short hop through the ionosphere) incurring very little signal attenuation
- In comparison, a low angle long distance multi-hop signal covering thousands of miles is highly attenuated by the time it reaches the receiving station
- Battery power is often utilized for 2 meter and 440 local communications at 10 to 15W
- The low power requirements of NVIS means that regional HF emergency communications out 200 to 300 miles can also be achieved using battery power
- Battery powered stations can often handle all of our emergency communication needs!

NVIS Antennas

- Horizontal antennas that are less than 1/4 wavelength above ground radiate high angle NVIS signals
- Vertical antennas are not well suited to NVIS but provide better ground wave propagation than horizontal antennas
- Line of sight propagation is provided by both horizontal and vertical antennas

Multi-band Inverted V NVIS Antenna

- A multi-band Inverted V antenna covering 40, 60, and 80 meters is an excellent NVIS antenna system ---- remember the need for frequency agility
- At an apex height of 32 feet, the 40 meter antenna is 1/4 wavelength above ground while the 80 meter antenna is 1/8 wavelength above ground
- 60 meters is an ideal NVIS band when the critical frequency is below 40 meters and D-Layer absorption on 80 meters is excessive

Height Above Ground

NVIS Antenna Patterns
1/4 wavelength above ground
1/8 wavelength above ground

• The -3db point in an antenna pattern is the elevation angle at which the antenna's signal strength drops 3db below its peak value (for NVIS its peak value occurs at 90°)

Author

- The -3db point for a NVIS antenna 1/4 wavelength above ground its approximately 30°
- At this elevation angle its single hop distance is roughly 600 miles
- The vertical radiation pattern of a NVIS antenna improves slightly by dropping its height from 1/4 to 1/8 wavelength above ground
- However, for a antenna 1/8 wavelength above ground its -3db elevation angle is approximately 45° with a corresponding single hop distance of roughly 400 miles

2 Element NVIS Antenna

Author

- Adding a Reflector element below a NVIS antenna enhances the antenna's vertical radiation pattern 2 to 3 db compared to a NVIS dipole 1/4 wavelength above ground
- The -3db angle for this 2 element antenna is about 60° with a single hop distance of around 200 miles
- The 2 element configuration is strictly a NVIS antenna
- A simple dipole 1/4 wavelength above ground is a more general purpose antenna
- It providing good NVIS capabilities, nearly as good as the 2 element antenna
- In addition it provides longer distance multi-hop communications with hops of up to 600 miles

Omnidirectional

- A standard dipole for long distance HF communications is oriented so that the direction of the intended receiving station is broadside to the antenna
- However, because of its close proximity to ground, a NVIS antenna is omnidirectional
- Consequently, the orientation of a NVIS antenna relative to the receiving station is unimportant

Author's Current RV Configured For NVIS

- We tend to think of NVIS antennas being large ---- but they don't have to be
- Author's 40 meter NVIS antenna constructed from two 8 ft "Ham Stick" antennas connected together in a shortened dipole configuration approximately 15 ft above ground

NVIS Extensively Used For Winlink Communications

- Why? (1) NVIS low power requirements (2) Few terrain problems (3) Minimal D-Layer absorption (4) No skip zone (5) fewer fading problems (6) Fewer multi-path interference problems (7) No backscatter (8) Uses easy to install omnidirectional antennas
- Selecting NVIS Winlink stations is very easy: simply select RMS stations within a range of 300 miles that are operating on 40 meters during the day and 80 meters at night
- Point-to-Point Winlink is extremely important when digital NVIS communications is required and the Winlink RMS structure is not available or appropriate

That's It Folks

HF Radio is fun

Plus

It provides communications when all else fails!